Рубрикатор |
Все новости | Новости отрасли |
Создана новая архитектура быстрых языковых моделей
16 августа 2024 |
Ученые из лаборатории исследований искусственного интеллекта T-Bank AI Research представили новую архитектуру быстрых языковых моделей ReBased. Новая разработка сокращает расходы на вычислительные мощности при использовании искусственного интеллекта практически без потерь в качестве.
В перспективе это приведет к более широкому коммерческому
использованию языковых моделей, которое сейчас ограничено высокой
ресурсозатратностью.
Самые распространенные языковые модели основаны на архитектуре «Трансформер», представленной в 2017 году исследователями из Google. Они хорошо зарекомендовали себя при решении практических задач, но для них требуется очень большое количество ресурсов, которые растут квадратично с удлинением текста. Для широкого практического применения необходимы менее ресурсозатратные архитектуры.
Наиболее успешные конкуренты трансформеров — последние SSM-модели (State Space Model, модели пространства состояний) Mamba, но они уступают по способности контекстного обучения, которое позволяет ИИ-агентам адаптироваться к новым задачам без необходимости повторного обучения.
В модели Based, представленной учеными Стэнфорда в декабре 2023 года, которая значительно улучшила способности контекстного обучения, специалисты T-Bank AI Research обнаружили неэффективное использование ресурсов из-за неоптимальной структуры нейросети. Они оптимизировали механизм извлечения информации из текста, добавив новые обучаемые параметры, которые отвечают за оптимальный поиск взаимосвязей между частями текста. Это позволяет улучшить процесс его обработки и получать более точные ответы. Ученые также упростили алгоритм выделения текстовой информации, что привело к увеличению производительности, повышению качества работы с длинными текстами и улучшению контекстного обучения. В среднем понимание взаимосвязей в тексте в новой архитектуре стало лучше на 10%.
ReBased способна снизить издержки на использование искусственного интеллекта для специализированных задач, которые имеют конкретную область применения и требуют учета ее особенностей. Например, в медицине такой задачей может считаться классификация текстов на основе симптомов и диагнозов.
Новая архитектура, предложенная учеными, позволяет приблизить качество линейных моделей к трансформерам. Модели, в основе которых лежит ReBased, могут генерировать тексты с более низкими требованиями к ресурсам практически без потери качества.
Источник: Тинькофф
Заметили неточность или опечатку в тексте? Выделите её мышкой и нажмите: Ctrl + Enter. Спасибо!
Оставить свой комментарий:
Комментарии по материалу
Данный материал еще не комментировался.