Rambler's Top100
Все новости Новости компаний

Разработана система проверки подлинности изображения лиц

17 октября 2023

Студентки Университета МИСИС создали кастомную нейросеть для определения наличия лиц на фотографиях и вычисления подлинных. Загружать изображения для проверки можно через специально разработанное веб-приложение, также предусмотрена возможность анализа в реальном времени через камеру компьютера. Для обучения нейросети использовались 16 500 настоящих и фейковых фотографий. Разработка, сделанная по заказу компании VK, получила первое место на хакатоне INNOGLOBALHACK.

Для решения задачи по созданию face anti-spoofing – комплекса защитных мер, направленных на предотвращение обмана систем защиты путем предъявления ей «ложного» лица – разработчики используют системы с применением внешних датчиков электронных устройств или анализом видео-отрывка, по которому можно определить, настоящее ли перед нами лицо и окружение вокруг него и др.  

Перед студентами-участниками хакатона стояла задача – предложить систему проверки подлинности изображения лица только по изображению с использованием методов машинного обучения. В своей работе разработчики опирались на обманы presentation attacks: использование фотографии лиц в печатном и электронном виде, а также объемных масок, имитирующие черты лица человека.

Студентки Университета МИСИС – Алиса Семенова, Алина Бурыкина, Елизавета Борисенко – проанализировали пять существующих нейросетей, выбрали из них две самые перспективные, и на основе проведенных экспериментов и наблюдений разработали кастомную версию представляющую собой двухступенчатую систему.

«Важным этапом разработки решения с использованием машинного обучения является поиск набора данных для обучения моделей (в данном случае речь идет о большом количестве фотографий с примерами как реальных лиц, так и «ложных»). Мы использовали набор данных из 16500 изображений: подлинных и фейковых с примерно равномерным распределением по типам обмана систем распознавания лиц: с помощью печатных фотографий и изображений на экранах электронных устройств, масок и персонажей мультфильмов. А также сами напечатали фотографии людей с различными внешними признаками, сделали их «ложные» изображения и добавили в выборку, – пояснила Алиса Семенова, студентка 4 курса Университета МИСИС.

На первом этапе распознавания лица используется предобученная нейронная сеть MTCNN, которая определяет положение лица на картинке. Затем на изображение добавляется специальное поле, 60% от площади которого составляет анализируемое лицо. Такое приближение дает значительный прирост в точности. Далее используется сеть InceptionResnet, дающая числовые представления особенностей лица. Это позволило избежать смещения в предсказании модели, которая помимо лица анализирует все изображение в целом. 

На втором этапе используется еще несколько слоев нейронной сети для отбора признаков изображения. Результаты двух этапов объединяются и проходят через несколько финальных слоев для получения окончательного вывода о подлинности изображения. Этот подход позволил команде достичь высокого значения точности при определении подлинности лиц.

Для нейросети было создано специальное веб-приложение, с помощью которого можно анализировать изображения лиц на подлинность, в том числе в режиме реального времени через камеру компьютера. 

Источник: МИСиС

Заметили неточность или опечатку в тексте? Выделите её мышкой и нажмите: Ctrl + Enter. Спасибо!

Оставить свой комментарий:

Для комментирования необходимо авторизоваться!

Комментарии по материалу

Данный материал еще не комментировался.

Продолжение использования сайта пользователем интерпретируется как согласие на обработку фрагментов персональных данных (таких, как cookies) для целей корректной работы сайта.

Согласен