Rambler's Top100
Все новости Новости отрасли

ИИ-алгоритм поможет найти взаимосвязи между предметами искусства

18 августа 2020

Исследователи из Microsoft и Массачусетского технологического института (MIT) разработали систему MosAIc для поиска взаимосвязей между предметами искусства из различных  культур и эпох. 

MosAIc использует глубокое обучение (deep learning) для анализа базы изображений предметов искусства, представленных в Музее Метрополитен (Нью-Йорк) и национальном музее Амстердама Рейксмузеум. Целью ученых было создать алгоритм, который будет подбирать предметы искусства, похожие не только по цвету и стилю, но и по значению и теме.

В результате система анализирует не только контуры и цвета на изображении, но и позволяет учитывать при поиске культуру, к которой принадлежит предмет, а также материал, из которого он изготовлен. Таким образом с ее помощью можно отследить процесс культурного обмена между различными эпохами и территориями.  Например, на запрос «какой музыкальный инструмент больше всего похож на это изображение бело-голубого платья?» к домашнему пальто, которое носили богатые голландцы в XVII веке, система предложила бело-голубую фарфоровую голландскую скрипку. Обе картинки не только похожи по узору и форме, они также являются наглядной демонстрацией обмена между голландскими и китайскими культурами – об этом говорит использование голландцами фарфора.
В создании алгоритма команда использовала новую структуру данных для поиска изображений, называемую «условным деревом KNN (K-nearest neighbors, k-ближайших соседей)», которая группирует похожие изображения вместе в древовидную структуру. При поиске совпадений система начинает со «ствола» дерева и следует за наиболее перспективным ответвлением, пока не найдет самое близкое изображение.

Исследователей вдохновила выставка «Рембрандт и Веласкес» в Рейксмюсеуме, в рамках которой картины художников, объединенные незаметными на первый взгляд общими чертами, выставлялись парами. Это распространенное явление в искусстве, когда в произведениях из разных периодов времени и частей света можно проследить схожие черты, ставшие результатом культурного обмена. Однако, человеку было бы невозможно проанализировать миллионы картин за тысячи лет и найти в них параллели в темах, мотивах и визуальных стилях. Разработка пригодится не только в искусствоведении, но и в любой сфере, где может быть полезен поиск сходных факторов: гуманитарных науках, медицине и других.

Протестировать работу системы можно тут .

Источник: Microsoft

Заметили неточность или опечатку в тексте? Выделите её мышкой и нажмите: Ctrl + Enter. Спасибо!

Оставить свой комментарий:

Для комментирования необходимо авторизоваться!

Комментарии по материалу

Данный материал еще не комментировался.

Продолжение использования сайта пользователем интерпретируется как согласие на обработку фрагментов персональных данных (таких, как cookies) для целей корректной работы сайта.

Согласен